Last updated: Jan 17, 2024
XGBoost Linear© is an advanced implementation of a gradient boosting algorithm with a linear model as the base model. Boosting algorithms iteratively learn weak classifiers and then add them to a final strong classifier. The XGBoost Linear node in SPSS Modeler is implemented in Python.
xgboostlinearnode properties |
Data type | Property description |
---|---|---|
custom_fields |
boolean | This option tells the node to use field information specified here instead of that given in any upstream Type node(s). After selecting this option, specify fields as required. |
target |
field | |
inputs |
field | |
alpha |
Double | The alpha linear booster parameter. Specify any number 0 or greater. Default
is 0 . |
lambda |
Double | The lambda linear booster parameter. Specify any number 0 or greater.
Default is 1 . |
lambdaBias |
Double | The lambda bias linear booster parameter. Specify any number. Default is
0 . |
num_boost_round |
integer | The num boost round value for model building. Specify a value between 1 and
1000 . Default is 10 . |
objectiveType |
string | The objective type for the learning task. Possible values are reg:linear ,
reg:logistic , reg:gamma , reg:tweedie ,
count:poisson , rank:pairwise , binary:logistic ,
or multi . Note that for flag targets, only binary:logistic or
multi can be used. If multi is used, the score result will show
the multi:softmax and multi:softprob XGBoost objective
types. |
random_seed
|
integer | The random number seed. Any number between 0 and 9999999 .
Default is 0 . |
useHPO |
Boolean | Specify true or false to enable or disable the HPO options.
If set to true , Rbfopt will be applied to find out the "best" One-Class SVM model
automatically, which reaches the target objective value defined by the user with the
target_objval parameter. |