Last updated: Jan 17, 2024
The Time Series node estimates exponential smoothing, univariate Autoregressive Integrated Moving Average (ARIMA), and multivariate ARIMA (or transfer function) models for time series data and produces forecasts of future performance.
ts Properties |
Values | Property description |
---|---|---|
targets
|
field | The Time Series node forecasts one or more targets, optionally using one or more input fields as predictors. Frequency and weight fields are not used. See Common modeling node properties for more information. |
candidate_inputs
|
[field1 ... fieldN] | Input or predictor fields used by the model. |
use_period
|
flag | |
date_time_field
|
field | |
input_interval
|
None Unknown Year Quarter Month Week Day Hour Hour_nonperiod Minute Minute_nonperiod Second Second_nonperiod |
|
period_field
|
field | |
period_start_value
|
integer | |
num_days_per_week
|
integer | |
start_day_of_week
|
Sunday Monday Tuesday Wednesday Thursday Friday Saturday |
|
num_hours_per_day
|
integer | |
start_hour_of_day
|
integer | |
timestamp_increments
|
integer | |
cyclic_increments
|
integer | |
cyclic_periods
|
list | |
output_interval
|
None Year Quarter Month Week Day Hour Minute Second |
|
is_same_interval
|
flag | |
cross_hour
|
flag | |
aggregate_and_distribute
|
list | |
aggregate_default
|
Mean Sum Mode Min Max |
|
distribute_default
|
Mean Sum |
|
group_default
|
Mean Sum Mode Min Max |
|
missing_imput
|
Linear_interp Series_mean K_mean K_median Linear_trend |
|
k_span_points
|
integer | |
use_estimation_period
|
flag | |
estimation_period
|
Observations Times |
|
date_estimation
|
list | Only available if you use date_time_field
|
period_estimation
|
list | Only available if you use use_period
|
observations_type
|
Latest Earliest |
|
observations_num
|
integer | |
observations_exclude
|
integer | |
method
|
ExpertModeler Exsmooth Arima |
|
expert_modeler_method
|
ExpertModeler Exsmooth Arima |
|
consider_seasonal
|
flag | |
detect_outliers
|
flag | |
expert_outlier_additive
|
flag | |
expert_outlier_level_shift
|
flag | |
expert_outlier_innovational
|
flag | |
expert_outlier_level_shift
|
flag | |
expert_outlier_transient
|
flag | |
expert_outlier_seasonal_additive
|
flag | |
expert_outlier_local_trend
|
flag | |
expert_outlier_additive_patch
|
flag | |
consider_newesmodels
|
flag | |
exsmooth_model_type
|
Simple HoltsLinearTrend BrownsLinearTrend DampedTrend SimpleSeasonal WintersAdditive WintersMultiplicative DampedTrendAdditive DampedTrendMultiplicative MultiplicativeTrendAdditive MultiplicativeSeasonal MultiplicativeTrendMultiplicative MultiplicativeTrend |
Specifies the Exponential Smoothing method. Default is Simple . |
futureValue_type_method |
Compute specify |
If For each predictor, you can choose from a list of functions (blank, mean of recent points, most
recent value) or use
specify to enter values manually. To specify individual fields
and properties, use the extend_metric_values property. For
example:
|
exsmooth_transformation_type
|
None SquareRoot NaturalLog |
|
arima.p
|
integer | |
arima.d
|
integer | |
arima.q
|
integer | |
arima.sp
|
integer | |
arima.sd
|
integer | |
arima.sq
|
integer | |
arima_transformation_type
|
None SquareRoot NaturalLog |
|
arima_include_constant
|
flag | |
tf_arima.p.
fieldname
|
integer | For transfer functions. |
tf_arima.d.
fieldname
|
integer | For transfer functions. |
tf_arima.q.
fieldname
|
integer | For transfer functions. |
tf_arima.sp.
fieldname
|
integer | For transfer functions. |
tf_arima.sd.
fieldname
|
integer | For transfer functions. |
tf_arima.sq.
fieldname
|
integer | For transfer functions. |
tf_arima.delay.
fieldname
|
integer | For transfer functions. |
tf_arima.transformation_type.
fieldname
|
None SquareRoot NaturalLog |
For transfer functions. |
arima_detect_outliers
|
flag | |
arima_outlier_additive
|
flag | |
arima_outlier_level_shift
|
flag | |
arima_outlier_innovational
|
flag | |
arima_outlier_transient
|
flag | |
arima_outlier_seasonal_additive
|
flag | |
arima_outlier_local_trend
|
flag | |
arima_outlier_additive_patch
|
flag | |
max_lags
|
integer | |
cal_PI
|
flag | |
conf_limit_pct
|
real | |
events
|
fields | |
continue
|
flag | |
scoring_model_only
|
flag | Use for models with very large numbers (tens of thousands) of time series. |
forecastperiods |
integer | |
extend_records_into_future |
flag | |
extend_metric_values |
fields | Allows you to provide future values for predictors. |
conf_limits |
flag | |
noise_res |
flag | |
max_models_output |
integer | Controls how many models are shown in output. Default is 10 . Models are not
shown in output if the total number of models built exceeds this value. Models are still available
for scoring. |
missing_value_threshold |
double | Computes data quality measures for the time variable and for input data corresponding to each time series. If the data quality score is lower than this threshold, the corresponding time series will be discarded. |
compute_future_values_input |
boolean | False : Compute future values of inputs.True :
Select fields whose values you wish to add to the data. |