Last updated: Jan 17, 2024
The Analysis node evaluates predictive models' ability to generate accurate predictions. Analysis nodes perform various comparisons between predicted values and actual values for one or more model nuggets. They can also compare predictive models to each other.
Example
stream = modeler.script.stream()
node = stream.create("analysis", "My node")
# "Analysis" tab
node.setPropertyValue("coincidence", True)
node.setPropertyValue("performance", True)
node.setPropertyValue("confidence", True)
node.setPropertyValue("threshold", 75)
node.setPropertyValue("improve_accuracy", 3)
node.setPropertyValue("inc_user_measure", True)
# "Define User Measure..."
node.setPropertyValue("user_if", "@TARGET = @PREDICTED")
node.setPropertyValue("user_then", "101")
node.setPropertyValue("user_else", "1")
node.setPropertyValue("user_compute", ["Mean", "Sum"])
node.setPropertyValue("by_fields", ["Drug"])
analysisnode properties |
Data type | Property description |
---|---|---|
output_mode
|
Screen
File
|
Used to specify target location for output generated from the output node. |
use_output_name
|
flag | Specifies whether a custom output name is used. |
output_name
|
string | If use_output_name is true, specifies the name to use. |
output_format
|
Text (.txt)
HTML (.html)
Output (.cou) |
Used to specify the type of output. |
by_fields
|
list | |
full_filename
|
string | If disk, data, or HTML output, the name of the output file. |
coincidence
|
flag | |
performance
|
flag | |
evaluation_binary |
flag | |
confidence
|
flag | |
threshold
|
number | |
improve_accuracy
|
number | |
field_detection_method
|
Metadata
Name
|
Determines how predicted fields are matched to the original target field. Specify
Metadata or Name . |
inc_user_measure
|
flag | |
user_if
|
expr | |
user_then
|
expr | |
user_else
|
expr | |
user_compute
|
[Mean Sum Min Max SDev]
|
|
split_by_partition
|
boolean | Whether to separate by partition. |